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Abstract

We establish g-analogues of Taylor series expansions in special polynomial bases for
functions analytic in bounded domains and for entire functions whose maximum modulus
M(r;f) satisfies |In M(r;f)|<AIn*r. This solves the problem of constructing such entire
functions from their values at [ag” + ¢~" /a]/2, for 0<g<1. Our technique is constructive and
gives an explicit representation of the sought entire function. Applications to g-series identities
are given.
© 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Two important problems in complex function theory are the problems of
expanding a function in a series of polynomials and the interpolation problem of
finding an entire function from its values on a given sequence {x,}, x,— co as
n— oo. The polynomial expansion problem has a long history. Whittaker [22,23]
introduced the concept of basic sets of polynomials where the polynomials are
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ordered but not necessarily according to their degrees and all degrees are present. A
more recent treatment of Whittaker’s approach is in the interesting monograph by
Makar [16]. Boas and Buck [4] restricted the polynomials to having a generating
function of a special type which guarantees that p,(x) has precise degree n, n =
0,1, ... . As a result of the specialization imposed by Boas and Buck, they have been
able to obtain more refined results than those which hold for general basic sets of
polynomials. The bases treated here are not of Boas and Buck type.
In this paper we solve the interpolation problem for the sequence {x2,},

xp = lag"? +q"?/d]/2, 0<q<]l, O<a<l, (1.1)

for entire functions f satisfying

In M(r;f)

limsup ———> =¢, (1.2)
re+om In“r

for a particular ¢ which depends upon ¢. Here M(r;f’) is [3]
M(r;f) = sup{|f(2)|: |z <7} (1.3)

In the process of solving this problem we also solve the expansion problem of entire
functions in two specific bases of polynomials, namely {¢,(x;a)} and {p,(x)}
defined in (1.9)—(1.10) and the coefficients in the expansion on {¢,(x;@)} involve
function evaluations at {x,,}. In the case of {p,(x)}, the interpolation points are

u, = i(q"? —q"/)2, n=..-1,01,... (1.4)
Carlson’s theorem [3] states that an entire function f* of order one and type less

than 7 is uniquely determined by the sequence { f(n):n=0,1,...}. Moreover, if
f(x) is entire of order 1 and type <In2 then

f(x) = i(x > (A")(0), (15)

and the series converges uniformly on compact subsets of the complex x-plane,
[3, Theorem 9.10.7]. In the above (Af)(x) = f(x + 1) — f(x). Another representation
was obtained by Ramanujan in his first notebooks, where he wrote

[ o> st dv =) (16)
0 k=0

sin 7s

Hardy [9, (11.2A), p. 186] proved (1.6) by contour integration and pointed out that it
holds under the assumptions in Carlson’s theorem. Therefore, Ramanujan’s formula
(1.6) provides a constructive proof of Carlson’s theorem by showing how to
construct the function f* from { f(n)}. Therefore, in some sense, our formulas are
closer in spirit to (1.5). An interesting question is to find the analogue of
Ramanujan’s formula (1.6).
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Ramis [19] defined an entire function f to have a g-exponential growth of order k
and a finite type if there exist real numbers K, o, K >0, such that

ot<infesp ().

Thus functions satisfying (1.2) are of g-exponential growth of order 2¢In’g.

Two of our main results are Theorems 3.1 and 3.3 which are stated and proved in
Section 3. Before we can state our results we need to explain the notation used, which
is mainly from [1,7]. The g-shifted factorials are

n

(@q) =1, (a9),=]]01-ad"), n=12 ., or o, (1.7)
k=1

while the multiple ¢-shifted factorials are defined by

k
(alvaZa” ak? H a]’ (18)
j=1
The bases of polynomials we are interested in are defined by
n—1
},(cos 0;a) = (ae”,ae™;q), = H (1 —2axq" +d¢*], a>0 (1.9)
k=0
pa(cos0) = (1+ ) (g "¢ q7),_ e ™. (1.10)

The motivation for considering these special bases is our desire to establish Taylor-
like series where the Askey-Wilson operator plays the role of 4= and these
polynomials play the role of monomials. The basis {¢,,(x;a)} was mtroduced in the
Askey-Wilson memoir [2] but the basis {p,(x)} does not seem to have been
considered before we introduced them in [12].

We now define the Askey—Wilson operator &, introduced in [2]. Given a function

1 we set f{e!) = f(x), x = cos 0, that is
f2) =f(z+1/2)/2), z=2¢". (1.11)

In other words we think of f(cos 0) as a function of ¢/, In this notation the Askey—
Wilson divided difference operator &, is defined by

_flg"2e") — flg™' ")
(Z41)(x) = (g2 —q=1/?)isin0 ’

x = cos 6. (1.12)
For example with f(x) = 4x> — 3x, f(z) = [z* + z7%]/2, and
g —=q >
It is a fact that &, reduces the degree of a polynomial by one and

lin} D,f(x) = (1.13)
q-

E (X),
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at the points where f is differentiable. Furthermore, in the calculus of the Askey—
Wilson operator the basis {¢,(x;a) : n=0} plays the role played by the monomials
{(1 —2ax +a*)" :n>0} in the differential and integral calculus.

Note that although we use x = cos 6, 6 is not necessarily real but e
as

+10 are defined

etV = x+ VX2 — 1,

and the branch of the square root is taken such that vx2 — 1 xx as x— oo. Thus
le™™| = |e| if and only if xe[—1, 1].
The action of &, on the bases in (1.9)—(1.10) is given by

2a(1 — g"

@q(pn(x; a) = _(lqu) ¢n—l(x; aql/2), (114)
. 1—=4g"

Dapul) = 24" = (), (1.15)

As already mentioned the values of an entire function f on the nonnegative
integers determine f', [3], when f is of order one and type less than 7. On the other
hand f(z) = sin nz is order 1 and type = and vanishes at all the integers, so type 7 is a
cut off point. A similar situation occurs for the interpolation points {xy :k =
0,1,...}. The function ¢ (x;a) vanishes at all the points xa, so if {f(xx):k=>0}
determine an entire function f uniquely then f is expected to grow slower that
¢, (x;a). It turns out that when cin (1.2)is <1/(21n ¢~ ") then f can be interpolated
from { /(x5 )} and f has a polynomial expansion in {¢,(x;a)}. For f(x) = ¢, (x; a),
¢=1/(2In g "), so the barrier, which corresponds to type =, is 1/(21n¢g~!). This will
be proved in Section 3. The uniqueness of an entire function taking prescribed values
at {xo} or {ux} follows from general theory of entire functions, [3], and divided
difference operators [8]. Our contribution is two-fold. Firstly, we provide an explicit
representation of the entire function with growth restriction. Secondly, we give
alternate representation of f when f is only assumed to be analytic in a bounded
domain.

In Theorem 3.1 we extend the following theorem from polynomials to entire
functions. Theorem 1.1 combines results from [11,12].

Theorem 1.1. Let f(x) be a polynomial and assume that x, is defined by (1.1). Then,
S =) feabilx;a)
k=0
with

Jis = q VDL ) ().
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In addition we have

) =" fippr(x),
k=0

where

_ 4R =)t
e = e 5T (251)00)

In Section 4 we rewrite Theorem 3.1 in the form of a Mittag—Leffler expansion, see
(4.2). This expansion turns out to be very useful in studying summation theorems for
basic hypergeometric series. Some examples are given in Section 5. Section 6 contains
concluding remarks and the evaluation of ¢ in (1.2) for the g-exponential function
64(z;). We have only included a few examples of the implications of the material
derived here and we have avoided including technical special functions results, which
will appear in a more specialized publication.

One interesting byproduct of our results is the following version of a formula of
Cooper [5]

DS (x)

(1.16)

(¢ =g ) = P2k 22 ) (@R 2725 g),,

_ ann( 1-n)/4 L) qk(nfk)ZZkfnfzq(nfzk)/ZZ)
k],la

0 x =cos0, and

o I U1 P
lkL_ (@ D14 Dic (1.17)

where z = ¢

is the g-analogue of the binomial coefficient.

The key tool used to establish the expansion of the Cauchy kernel is the
theory of basic hypergeometric functions. An interesting open problem is to
find a purely complex variable proof of this expansion or of the expansions of
entire functions. For convenience we include the definition of a basic hypergeometric

series
q, Z)

(i) ay, ..., dy
"\ by, L by
- rqss(alv"';ar;blvn-»bx;qu)

o0

(ala ...7ar;q) n (1—1)/2 n(s+17r>
= AL et | Ly (Pl . .
,,; (¢,b1, ..., bs:q), (=" D7) s
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Finally we use the Bailey notation
W(dai,...,a;q,2)

2
X (]’) a,qa,—qa,di, ...,dy
—r+3 Pry2 ) b
a,—a,qa*/ay, ...,qa*/a,

q,z) (1.19)

The ¢ function in (1.19) is called very well-poised.

2. Expansions of the Cauchy kernel

In this section we expand the Cauchy kernel 1/(y — x) in terms of {¢,(x;a)} and
{p,(x)}. This is done in Theorem 2.1. The Cauchy kernel expansion is then used in
Theorems 2.2 and 2.3 to expand entire functions in the same bases with coefficients
represented by contour integrals. These integral representations are analogues of the
Cauchy formulas.

It is easy to prove that

2a(1 — ¢") 1
1/¢,(x;a . 2.1
21/ nlvia)) = == q  ¢p(x;aq717?) 2
It is clear that
i
b 2 (2.2)
cos¢p —cosf ¢ (cosb;e?)
and therefore if y = cos ¢,
B 2(—1)F gtk 2tk 1)
T ) ey = 23)

ak(ae't, q=%el? [a; q),

Theorem 2.1. The Cauchy kernel has the expansion

L1 ¢ (xa) | K du(xia)
y=x y-x¢,a) 2an:0¢n+1(y;a)q’

for all y such that y#x, and ¢, (y;a) #0. The above expansion also holds if y = yy,
¢ (vo;a) =0, but x#yy in the sense that the left-hand side at y = yo equals the limit
of the right-hand side as y — yo. Moreover, the expansion of the Cauchy kernel in {p,,}
is

1 x (7q€2i0, 76[6—2:’9; qz)% y (7€2i9, 76—21'0; qZ)m

y—x Y2 —x2(—qelid, —qe 2t 2, +y2 — X2 (=¥, —e 2 )

ypn x) .
+ 4 q
Z )’ + 4724, (»)
provided that y+# x and pn(y);éOfor alln,n=0,1, ... .
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First note that p,(x)/p,(y) is uniformly bounded if y is not a zero of
(—e*, —e729;q)_, since we have
B (_eZiH’_e—zm;qz)oo
- (7€2i¢’ 76—2i¢;q2)00’
xX) _ x(=qe*, —qe"; ¢)

lim Pzzv(x)
N-owo pyy ()
fim P2 A A .
Now poy i (¥)  y(—qe¥®, —qe=:q?)

0

Hence the second series in Theorem 2.1 converges absolutely and uniformly for x
and y in compact sets.

Proof. The idea of the proofis to formally expand the Cauchy kernel using (2.3) and
Theorem 1.1. The formal expansions of the Cauchy kernel in {¢,(x;a)} and {p,(x)}
converge, but not to the Cauchy kernel. So we evaluate the difference explicitly using
the theory of basic hypergeometric functions [1,7]. These are the two terms in
Theorem 2.1.

With x = cos 0,y = cos ¢ we get

(g — 1)fgk-H/4
(2a)"(¢; 9)x

using (2.3). Thus the formal expansion of the Cauchy kernel is given by

_ —2agF
_ $yi1(cos ¢; a)’
X=X}

7k —-x)"

% i0 il
(ae" ae™;q)
2 Z (ae'd ile—f‘/" ) —d
k=0 ) 39 ) k1

_24 ( q,aei07ae—i0

1 —2ay+a23¢2

q, q) , (2.4)

which is the sum on the right-hand side of the first formula in Theorem 2.1. Applying
the transformation [7, (I11.9)] and assuming Im ¢ >0, we see that the last expression

is given by
- 2a o qe"?0, gt
(1= q)(1 —acit) 2 e
2el
(1 — el@=0)(1 — ¢ilé+0))

006+
x |1 —=2¢y ,

qae” , q*

q, ae’¢> ] .

The ,¢, is summable by the g-analogue of Gauss’ theorem [7, (I1.8)] and its sum is
(ae,ae™;q)  /(ae'® ae=%;q)_ . The result is the first expansion in Theorem 2.1.
We remove the assumption Im ¢ >0 by analytic continuation.

To prove the second expansion, we evaluate the sum on the right-hand side of the
second formula in Theorem 2.1. After the application of (1.10) the sum with which

ae'd
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we are concerned is found to be

0 1(n+1) (1 +e21())(_q2—ne2i().q2) .
em@(lq n/Zelgb7 _l'qfn/Zeiqb; q) :

(2.5)

n=0 n+1

We first assume that [e*| < 1. We next sum over n even and over n odd. The even
sum is

2eiq‘) i 21'97 72i9;q2) an
1+ e%¢ zqu’ ige~'*, —ige'd, —ige='*; q),

i P~ o2
T RN P
1+ eZlqb —q 621([)’ _q26721(b
(1 — Q2(@+0) (1 — e2(6-0))
2i(p—0) 2i($+0)
B ¢ '€ 2 2ip
X |} 2 d)l( _ezid’ q,—e )

where the transformation [7, (II1.9)] was applied in the last step. Again Gauss’
theorem [7, (I1.8)] sums the ¢, and we see that the even sum is

203 (1 + e~ 2%)

_ 200
y [tz ia)y | (2.6)
y2 —x2 (7@2@7 —e 21¢;q2)w
The odd sum can be similarly handled and can be simplified to
_ =20, 2
x [ (=4et —qe ), | (27)
V=xt (et —qe 5 q7)

Now we remove the assumption |e~*| < 1 by analytic continuation. Equating (2.5) to
the sum of (2.6) and(2.7) gives the second part of the theorem and the proof is
complete. [

Theorem 2.2. Let f be analytic in a bounded domain D and let C be a contour within D
and x belong to the interior of C. If the distance between C and the set of zeros of
¢, (x;a) is positive then
¢ (x5a) [ f d
Sy el [ 10) _dy
2ni Jey—x¢,(v;a)

-5 v f SO0

n+l

Proof. It is clear that
¢u(x;0) /Py (via) > o (x30) /b (vi @)

uniformly in y on compact subsets not intersecting the set of zeros of ¢ (y;a). Thus
we can multiply the first expansion in Theorem 2.1 by f(y) and integrate with respect
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to y and interchange integration and summation. The result then follows from
Cauchy’s theorem. [

Theorem 2.2 gives the g-analogue of expanding f(x) around x = (a+ 1/a)/2.
From the theory of functions we know that if f(a) = 0 and f(/)(a) = 0 for 1 <j<m —
1, then the Taylor series starts with the term f"(a)(x —a)”/m!. This feature
continues to hold but we have to define a g-analogue of a multiple zero.

Definition. Let x = (a+ 1/a)/2 be a zero of f(x). We say that it has g-multiplicity m
if

1
flzx) =0, 1<k<m-—1, and f(z,)#0, zkzzz(aqk—l—q_k/a). (2.8)

Similarly a pole x of f has q-multiplicity m if x is a zero of 1/f with g-multiplicity m.

It must be emphasized that the above definition is completely analogous to the
definition of a multiple zero in difference equations in Hartman [10]. With this
definition one can see that if (¢ + 1/a)/2 is a zero of f* of g-multiplicity m then the
terms corresponding to n = 0,1, ...,m — 1 in the sum in Lemma 2.2 vanish and the
sum starts from n = m.

Theorem 2.3. Let f be analytic in a bounded domain D and let C be a contour within D
and x is interior to C. If the contour C is at a positive distance from the set { +i(q"/* —
g "?))2;n=0,1,...}, then
2x [ () (=qe'"t9), —gel=9), —gel0=0) —ge 10H0); ¢)
f(x):_-f — . —2ip _ ,—2ip.
miJey—x (=4, =4:9) . (=€, —e72%:q)

25, (00 yf (v) dy
+ o 2 7{4(1 — o+ 42, (0)

with x = cos 0 and y = cos ¢.

Proof. The proof is very similar to the proof of Theorem 2.2. The only step requiring
justification is the identity

X (—qe¥ —qe 0 ) y o (—ed o720 g2y
V2= X2 (—qe¥, —qe 2 q7) +y2 — X2 (=¥ —e b g
dxy (—gel @), _gel0-9) _gel@=0) _ge=i(0+9). )
T y-x (=4, —4:9) . (—€*¢, =73 q)
The proof of (2.9) uses the relationships [21, Chapter 21]
9a(2) = 2Gg"/* cos 2(— e, — e, P,
Gq'/4

2cosz

93(2) — G(_quiz7 _qe72iz;q2)oo’

. (2.9)

—2iz,

(_e2iz —e 7qZ)007

)
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and the product formulas in Exercise 3, page 488 in Whittaker and Watson [21]. The
notations ; == 9;(0), G = (¢*; ¢*), [21] were used. We omit the details. One referee
kindly pointed out that (2.9) also follows from (2.16) and (5.21) of [7]. O

We record the following equivalent form of the representation of f in Theorem 2.3

f) = ) (4 —qe ),
2mi Je y? = x* (—qe¥?, —qe 9 4%)

Y O I G e it L P

2 Joy? — 2 (—0, —e g,

dy

o0

25, (o0 v (y) dy
+ o 2 7{c[<1 — )+ 420, (0)

3. Expansions of entire functions

In this section we establish expansion theorems for entire functions of g¢-
exponential growth. The expansions are in terms of the bases {¢,(x;a)} and {p,(x)}.
Observe that M(r; ¢, (x;a)) = ¢, (—r; a), since a>0. Hence with

rm = lag"? +atq ")) /2, —1<0<0, m=0,1,.... (3.1)
we find
M(ru; b (x50)) = ¢ (—1a30)
= (=4 %), (—q°, —aq""q),,
52 —n—(n+0)> J —0 n
= ¢l IRt g) (—q7°, —dq" 5 q) (3.2)
so that
lim D M(Zn;qioo) __
n— oo ln ™ 2ln qil

The fact that ¢ (x;a) vanishes at x, for all » motivates our next theorem.

Theorem 3.1. An entire function f satisfying (1.2) with ¢<1/(2lng™") has a
convergent expansion

() =Y figbilx;a),
k=0

with { fi.¢ } defined in Theorem 1.1. Moreover, any such f is uniquely determined by its
values on {xy,:n=0}.

Note that (ggf)(xk) is a linear combination of f(xo), ...,f(x2), so that the
coefficients fi 4 in Theorem 1.1 also depend on the points {x,,:n>0}.
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The proof of Theorem 3.1 relies on a lemma which we now state and prove.

Lemma 3.2. Let f be entire and satisfy the condition in Theorem 3.1. Then if r, is
defined by (3.1), we have

lim S _dr

1= Jyer, ¥ = X o (v54)

Moreover, the same conclusion holds if

lim ¢"" 2402 sup{| f(r,e®)|: 0<0<2n} = 0.

n— oo

Proof. Tt is clear that inf{|¢ (y;a)|:|y| =r} = |¢ (r;a)|. Hence for |y| =r,, we
have

b, ia)| = (a7 %), (%, d*q" s q) .

n(n+26+1)/2( O+1, -0 n+o.
i ) Y

=q @5 q),(q°, aq" 5 q) .

Therefore,

In M1/ )/, (i) < 3 [+ (14 )] Ing +In M) + O(1)

1 1n®r,

:lnM(ry”f) _EW—F 0(11’1}’”)7

and the lemma follows. O

Instead of proving the expansion in Theorem 3.1 in the basis {¢,(x;a)} we shall
prove the following equivalent result.

Theorem 3.3. The expansion formula

o0

F) =" ¢"Frgdba(x:a),

n=0

with

B n (71)/€qk(k71)/2(1 _ a2q2k)
Tuo = kz:; GO G D @)

holds for functions [ satisfying the assumptions of Theorem 3.1.

Proof. In Theorem 2.2 we choose C to be C,, a circle centered at y = 0 and radius
rm. Lemma 3.2 shows that the first integral in Theorem 2.2 is small if m is large. We
split the remaining sum in Theorem 2.2 into tail terms with »>m, and initial terms
with n<m. We will show that the tail is small, leaving the initial terms. Then a
residue calculation establishes the expression for f,4, because the poles of
S)/ b, (v;a) are at y = xo, k = 0,1, ...,n. The details of the residue calculation
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are omitted since they are similar to the calculation at the end of the proof of
Theorem 3.4.
Note that if n>m then

min{|¢, . (v)|:y€Cu}
= |¢n+l (i’m; a)| = |(q7n17(57 aqu71+5; q)n+1 |

= (") (1)@ @) p1m(@PT"5 Q)

_ qu(m+25+l)/2( o+1,

q 7q)ma (qié;q)nJrlfm(

>q—m(m+25+1)/2A _ q_((n1+6)2+1_52)/214,

2 m+o,
aq""’:q),.

where A is a positive constant independent of n and m. Therefore, for sufficiently
large m, and ye C,,

(M (ri f/ $par)]<ler +1/(21n g)] In? 1, + O(m)

for some ¢y, c<c;<1/(2Ing™).

This is a uniform bound of ¢ P(n Vm)z, D>0, for each integral for n>m. Since

¢, (x;a) > ¢, (x;a), there is a uniform bound B for ¢,(x;a) on compact sets. Thus
the tail is bounded by

Z Bgle~ P )2 < Bg"™e P r‘m)z/(l —q),
n=m+1
which is small for m large. [

For polynomials f we equate the coefficients f,, in the expansions of f in
{¢,(x;a)} in Theorems 3.3 and 1.1 and discover the identity

Dy f (xn)
B (q_ 1)” k=0 [k]q (a2qk;q)n+l (1 “d )f(ka)- (33)

Since (3.3) holds for arbitrary polynomials it must hold for all continuous functions.
Using the notation

ng ' (x) = flg* "), (3-4)

and noting that «, is a general parameter and x, = 1"x(, we can rewrite (3.3) in the
form

(3.5)

9Zf(x):w - [n] (—1)fgkte=D/2y2k=np ()

(¢-1)" |k q(zzq"*”;q)k(Zqu"“*”;q)nfk’

with x = (z +z71)/2. Eq. (3.5) can be shown to be equivalent to Cooper’s (1.16).
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Theorem 3.4. Let [ be an entire function satisfying (1.2) and assume that c<1/Inq~!
Then [ has the expansion

:Zﬁiﬁppn(x)
n=0
where
2
. (¢" + g")g R
ﬁ1. =7 -1 k f Un—2k ),
. k;( ) 247 47 (@5 4%) i (in-20)

and {u,} is given by (1.4).

For general entire functions not necessarily satisfying (1.2), we note that the
property u; = —u_;, allows one to conclude that for even functions f', f5,41, = 0 for
all n=0, while for odd functions f, f5,, = 0, for all >0, confirming that f and its
formal expansion .~ f,p,(x) have the same parity.

Proof. We basically repeat the proof of Theorem 3.3, with some changes in the
technical details. We will use
__,2i0 7219
pZN(x) _ ( ez<¢, 2¢7q ) (36)
pan(y)  (—e¥? —e 2P q7)

Pan+1(x) x(—q€2i97 —gqe= 20, 612)1\/
- 2ig 2ip. g2 (3.7)
Pav+1(¥)  ¥(—qe*®, —qe=2;q%)
Let C,, be a circle centered at y = 0 with radius r,,,
Py = [q /2 — gt/ )y 1 <5<, (3.8)

and m is even. We use the form of the Cauchy kernel in (2.10) and show that the first
integral in (2.10) with C = C,, tends to zero as m— oo. Thus we minimize the
modulus of the denominators in order to give an upper bound for the integral. The
first denominator is minimized by choosing y* = —r?

min{|(—ge*®, —ge™2*;¢*) .| : ye Cn}

_ ‘(ql—m o’qm+b+l ) | _ |( l-m— o’ )m/2|(q1—5,qm+6+l;q2)oo
>Aq—(m+5) /4
for some positive constant 4 independent of m.
Similarly,
min{|(—¢*?, —e’z"‘”;qz)n |:yeCu}
_ |(q—m—()’ m+() ‘_ |( —m— ()’ )m/2|< —0 qm—o—b;qZ)m

ZAqf(eré) /47m/2.
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So the sum of the first two integrals, ||, is bounded by
| <B M(rif)g" ",
for some B independent of m. Thus,

(Inry)” rm)
Ing

which proves that |I,,| >0 as m— oo, m even.
Next we show that > .| ¢"I,, tends to zero as m— oo and for x in compact
sets, where {I,,,} are the integrals

I ro () dy 39
" i,,,pn(y)[(l—q”)2+4y2q”] )

For ye C,,, and n>m, we have
(1= ¢") +47°¢"| = (1 + ¢"¢ ) (1 + g"e7*?)|
>[(1—g" ") (1= g"" ")
>(1-¢""")(1—¢"").
Moreover after applying (3.6) and (3.7), we get for ye C,, and n>m,

In|L,|<In M(rp;f) + + O(Inry,)

po(¥)| _ [(=€*", —e"; )|
P W) @0, 405 q2),|
|(—€210, 72107q ) |

< . g
|(q—m—(>; qz)m/2|(q i q )11_’11/2(qm+b; qz)n

<A q(m+6)2/47
for some constant A4, and
P ()] _ [X(=ge, —ge " ¢°), |
Poan+1 (y) |y(q17'7170a q1+m+5; q2)11|

‘x(_qui() _qe—Zi(). (12) |
< _ ) ) n _
(g™, qz)m/z(ql—(s; qz)nim/z(qwmw; ),

< A2q<m+5)2/4'

The constants 4| and 4, depend on the compact set x to which x is restricted but do
not depend on y, m or n.
As before this shows that

2
In |l <In M(f;rm) + (hllnrm) + O(lnry,)
q

< (e + 1/Ing)(nry)?,

for some ¢;, 0<c;<1/Ilng™!

m-— 0.

which shows that Y7 . ¢"|I, x| tends to zero as
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Next we evaluate the sum Y "' ¢"I,,, by residues then let m— co. From (1.10) it
follows that

Puia(0) = a7 "[(1 = ¢") + 47¢"]p, (»),

hence we need to evaluate

?{ () dy
Cn Pn+2(J’) .

The poles {yc} of y/p,,»(y) are

i[q7k+n/2 _ qkfn/Z]/z7

k=0,1,...,n. Let yx = cos ¢, hence

(3.10)

. —igk="? 0<k<n/2,
el —
ig "2 nj2<k<n.

It is routine to use (3.10) and find that the residue of y/p, ,(y) at i[g~*"/? —

qk‘”/z]/2 is

k _
i (=D (¢" K+ qk) qk(kfn)Jrnz/Z k
8(4% 4*) (4% 4%) s ’

=0,...,n,

and the theorem follows. [
Remark. The first part of the proof can be replaced by estimating the first integral in
Theorem 2.3 directly. Let |e| <4 for all x in a compact set. Hence for ye C,, and

fixed x, we have

o8]

n (‘y(_qei(ew), _qei(e—fb)’ _qei@fo)? _qeﬂ(oﬂz)); )
(e, —eTrg),,
<ln((_Aqlf(erfi)/Z7 _qlf(m+§)/2/A; q)oo)
— In(|(g7"%;9).,) + O(1)
<1H((—Aql_(m+6)/2, _ql—(m+6)/2/A; Q)m/z)
— (g™~ q),,|) + O(m)

= mi(m:- 20) Ing+ O(m) =

In’r,,
Ing!

+ O(In(ry)).

Therefore, the first integral on the right-hand side of the equation in Theorem 2.3
tends to zero as m— oo.
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4. A Mittag—Leffler expansion
It is tempting to substitute for f, in the first formula in Theorem 3.3 then rearrange
the sum and find the coefficient of f(x,;). The formal interchange of sums gives
I (=D DR (1 — g

_ —i0,
f(x)_kz:; (¢; D (@55 @) (ac”’, aes ),

" agke” agke="
X2

g
The 2(;51 can be summed by the g-analogue of Gauss’ theorem [7, (I1.8)] and its sum is

(ag"* e agtte: q) . [(a*¢**,¢;q) ., and (4.1) becomes

()& ()R - a2 S (x2)
bo(xia) = (¢9)(q.0%¢ 5 q),, 1 —2axq" + a’q**

q, q)f(xzk). (4.1)

(4.2)

Theorem 4.1. Formula (4.2) holds for entire functions f satisfying (1.2) with
c<1/(2Ing™).

Proof. Let r,, be asin (3.1) and C,, be a circle centered at the origin and have radius
rm. Let x be fixed and m be large enough so that x is interior to C,,. Consider

27r17{ ¢, (via) y,

From Lemma 3.2, I,,—0 as m— oo. On the other hand, the residue theorem implies
f(x)
¢ (x;0)
O (D DR — a2y S (k)
— (g4 q), 1 -2axq" + a*q*

(4.3)

I, =

and the theorem follows. [

Clearly Theorem 4.1 is a Mittag—Leffler expansion.

5. Applications

Recall that the conclusion of Lemma 3.2 holds provided that
lim M (r,;f)g""2+D/2 = 0. (5.1)
n— oo
where r, is defined in (3.1). By examining the proof of Theorem 3.3 we see that it

continues to hold under assumption (5.1). In fact we can replace the sequence {r,} in
(5.1) by any subsequence {r,, }.
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As a first application of the above observation we let
g(z) = (be” be™";p) ., p<q, z:=cosh. (5.2)
To verify (5.1) we employ

w(rni9) < (=|b/alg™"~°, —|ablq"*; p) .
< (=[b/alg™, ~|ablg"*’;q).,
|b/a|n —n(n+20+1) /2( |b/a|q7()7_ql+5‘ab|;q)oo.

Thus (5.1) holds when |b/a| <1, and (4.2) will then hold for |b|<|a| and we have
established the series summation

(b be " p),,
(qae”, gae="%; q),
-y D' V2, ag, —ag; g),
— (9,9, —a;9)(q,47¢:q) .

(ae ae™: q) P
(age™, age~ ’9;61/31( (abg”.ba " faip) . (5.3)

valid for 0<p<gq, or p = ¢ and |b| <|al.
Mizan Rahman pointed out that (5.3) follows from a result of George Gasper.
Gasper’s formula is (5.13) on p. 68 in [6] and can be stated as

6+2mW5+2m<A B del7'-'7 my PR »%d
€] €m

 (q,Aq,Aq/Bd,Bq/d;q), {% (44/Be;, Bq/ej;q),
(Bg, Aq/B, Aq/d.q/dq),, 5 (Aq/ejq/e;q),

We put
A=d*, B=aé", d=q™ e=agp' /b, m=1, 1<j<m.

Write the g2, Ws.om as a sum over k, k>0. The contribution to the kth term of the
factors containing ey, ..., e, 1s

m—1

H (agp™"/b,abqp"; q);
*5 (abp',ap="/b;q);

”i—[ —agp /D)L~ abp'q") _ i (abg’.ba /@ p),,
=0 lfap '/b)(lfabpr) (abab/a;Q)m

Now (5.3) follows by letting m— 0.
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When p = ¢ in (5.3), a simple calculation using

kN o (bg*aiq)
(abg*,bg™* Ja;q).,, = (ab,b]a;q)., W

_(=b/a)(ag/b; ), ,
- G ED2 (abs ), (ab,b/a;q) .,
shows that the right-hand side of (5.1) is (ab,b/a;q).,/(q, an; q)
function. Thus (5.3) with p = ¢ is equivalent to
—i0.

b
g
__(g,4%q,be" be™":q) (5.4)
(aqei()7 aqeii()? aba b/“a q) 0 ' .

., times a ¢@s

i0

—i()7 aqei()

a*,aq, —aq,aq/b,ae’  ae~
695
a,—a,ab, aqe

Formula (5.4) is the sum of a very well poised ¢¢s, [7, (I1.20)]. The most general s
has four free parameters, but our (5.4) has only three free parameters.
Another application of (4.2) is to choose

F@ =146, ficoso) = (e be ™ p),. (5.5)
i=1

Here we will only mention the case when the p; = p for all j. In this case we choose a

positive integer / such that ¢/*! <p<gq’. It suffices to take n = Is in (5.1) and for
sufficiently large s, we get

M (ris; 5) < (=Ib;/alg ™%, —lablq"**; p) .
<(=lby/alg™ 2 p),(~1bi/alg™®, ~laby|"**; p)

<|bj/al'q B4, (5.6)
where A; is a constant depending only on a, by, ..., b, 6 but not on 5. With r defined
through

p=q", 1<r<l+1/], (5.7)
we obtain

M(rls ;f)qls(lerZéJr 1)/2

< qu (Is+0)sm-+Is(Is+20+1 )/ZPmX(Sf 1)/2

m
|bj/al’, (5.8)
j=1
for some constant B. Substitute for p in (5.8) from (5.7) to see that the coefficient of
5% in the exponent of ¢ is nonnegative if and only if
[Zm(2—r). (5.9)

If I = m(2 — r) then the coefficient of s in the exponent of ¢ is m[6 + 1 —ré — r(1 +
m(2 —r))/2]. Thus we have established the following theorem.
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Theorem 5.1. Let f be defined by (5.5) with p; = p for all j,1<j<m, and let [>1 be
defined by ¢ <p<q'. Set B = |by---by|"™". If

(i) I>m(2—r), or

(i) l=m(2—r) and Bg'"UTm22<|q),
holds then f has the Mittag—Leffler expansion (4.2).

The details of consequences of Theorem 5.1 will be explored elsewhere. We just
mention the case p; = p = ¢", so r =1 and m = [. Thus (4.2) holds if

m

I 1i/al<qmm172. (5.10)

j=1
Thus (4.2) gives
H;n:I (bjeiﬂ7 bje—iﬂ; qm)oc
(ae”, aew;q)
i ) gtk /2(1 ) 17 (big ™ [a,abig; q™) .
o (04" q),, (1 —agke?)(1 —agre=) "
The special case m = 2 of (5.13) follows from [7, (II1.38)]. To see this we first write
upper case letters for the parameters a, b, ..., q in [7, (I11.38)]. We make the choices
0=¢*, A=B=¢" C=e",
D=¢*/by, E=¢’/b, F=a, G=aq. (5.12)
The resulting gy on the left-hand side of (II1.38) in [7] reduces to 1 because its
numerator parameter AC is 1, while a denominator parameter (= AQ/B) is ¢, which

is the base of the gig. The even and odd sums in (5.11) are the g¢;’s on the right-
hand side of (II1.38).

(5.11)

6. Remarks

In [12] we pointed out the importance of the polynomial basis
¢n(COS 9) _ (q1/4€1'07 q1/4€7i0; q1/2)

in the theory of basic hypergeometric functions. We also established the g-Taylor
series

(6.1)

n’

X) = fidy(x), (6.2)
k=0
for polynomials f, where

k
WU gk 1) (6.3)

fe =
2kgkl*(q; q),
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and
Cn _ [q(n+l/2)/2 + q—(n+1/2)/2]/2. (64)
The proof of (6.2) uses
D Pu(x) = ‘11/4 ¢n 1 (). (6.5)

One can also extend (6.2) to entire functions satisfying (1.2) with ¢<1/In ¢! using
Theorem 3.1 because the interpolation points used in (6.4) correspond to replacing ¢
by ¢'/? and a by ¢'/* in (1.1).
The g-exponential function of [14] is
(%07 N~ (S
E4(cosO;t) = - q!
o ) (@ ¢%) ; (¢:9),
x (—ig! %", —iq $9), (6.6)

The function &4(x;?) is entire in x for all ¢, |¢f|< 1. Corollary 2.5 of [12] is

12 1/4,i0 1/4 ,~i0

, i q qe,qe

Eq4(cos 0;1) = ((qt2q))2¢1< 1 q1/27z>, (6.7)
i o0 -

(1-m)/2 i,

We now show that (6.7) enables us to determine the exact limiting behavior of the
maximum modulus of the &, function. Let r = coshu, u>0. Thus (6.7) implies

In M(coshu; 6,) <In((—¢'/*e", —q'*e™; ¢"?) ) + O(1),

as u— oo. It is clear that for any sequence {uy, } tending to infinity, ¢"» can be written
in the form ¢~»+%)/2 with positive integers n,, such that —1/2<J,,<1/2. From
here it is not difficult to see that

In M(r; éaq)< 1

li < . 6.8

@f;}p In? r Ing~! (68)
On the other hand the sequence r,, = [¢g~"*1/2)/2 4 gm+1/2)/2] /2 makes

(qtz q ) qu/z, q(m+l)/

W & (Vm§ Z) =2 ¢1 —ql/2 ql/z, —1]. (69)

The right-hand side of (6.9) is a little g-Jacobi polynomial ®*#)(x), with o = f = —1
and x = —1/¢'/?, [13], hence the ,¢, in (6.9) is asymptotically equal to

g~ P q) /(=46
by (1.5) in [13]. Therefore

. MM E) . In M & 1
lim sup 70 ) > lim — (2rm 2 _ -
ro o0 In’ r m>wn’ Ing~

Therefore (6.8) and (6.10) establish the following theorem.

(6.10)
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Theorem 6.1. For |t| <1 the maximum modulus of &, has the property

. In M(r; & 1
lim sup — (2r o) _ —.
row In“r Ing

It is worth mentioning that Theorem 6.1 shows that (6.7) does not follow from the
general approach developed here. It is of interest to find a function theoretic
approach to development of identities like (6.7). A simple proof of (6.7) using ideas
from the Sheffer classification [18] is in [15].

There is extensive literature on entire functions of exponential order when f'(n)
takes integer values at n, n=0,1,... . One such theorem is due to Polya [17] and
states that an entire function of exponential order <log 2 which takes integer values
atn,n=0,1, ..., 1s a polynomial. Wallisser [20] mentions the following g-analogue,
due to Gelfond [8].

Theorem 6.2. Assume that [ is an entire function such that

. _(In(or))?
In M(V,f) Sm

)

and q is an integer such that 2<gq,o<1/q. If f takes integer values at q" then f is a
polynomial.

Wallisser [20] then raises the question of finding the form of the entire functions
taking integer values at the points (¢"—1)/(¢—1), n=0,1,..., with some
restrictions on ¢ in addition to ¢g>1. In fact our work raises the question of
describing a class of functions f such that if f(xz,) (or f(u,)) is an integer for all
n=0,1,..., then f is a polynomial.
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